報告題目1:From discrete nonlocal NLS equation to nonlocal NLS equation
報告時間:2019.10.22 15:00-16:00
報告地點:一樓報告廳
朱佐農教授簡介🐠:朱佐農教授現任上海交通大學教授,目前主要從事孤立子與可積系統方面的研究🧛。
報告摘要🙍🏽:In this talk, we will focus on the topic that from discrete nonlocal nonlinear Schrodinger equation to nonlocal nonlinear Schrodinger equation.
報告題目2:Application of algebraic curves in integrable systems
報告時間♓️:2019.10.22 16:00-17:00
報告地點:一樓報告廳
報告人:耿獻國 教授
耿獻國教授簡介👩🦯:博士,二級教授🧑💼🛸,博士生導師🤦🏿,主要從事可積系統及應用方面的研究。現任鄭州大學學科特聘教授—學科方向帶頭人,中國工業與應用數學會理事🚒👨🏿⚕️,河南省數學會理事長🧑🏽⚖️。美國《數學評論》(Mathematical Reviews)評論員。國務院政府特殊津貼專家,河南省優秀專家🤽🏼♂️。2003年被評為河南省特聘教授,2016年獲河南省科技進步二等獎🧖🏽♂️🦹🏿♂️。2012年獲全國百篇優秀博士學位論文指導老師,所帶領的研究團隊2016年被評為河南省可積系統及應用研究創新型科技團隊🕯。2005年2月至2017年3月任數學與統計必一院長, 中國數學會十屆和十一屆理事🍮。
報告摘要🧑🏽💻:Resorting to the characteristic polynomials of Lax matrixes for the soliton hierarchies, we introduce the corresponding algebraic curves, including the hyperelliptic curve, trigonal curve, and tetragonal curve. We study the calculation of genus of algebraic curve, properties at infinity, and the construction of three kinds of Abel differentials. We establish the corresponding Baker-Akhiezer functions and meromorphic functions. The straightening out of various soliton flows is exactly given through the Abel map and Abel-Jacobi coordinates. Using the theory of algebraic curves, we obtain the explicit Riemann theta function representations of the Baker-Akhiezer function and the meromorphic function. As an illustration, we arrive at algebro-geometric solutions of the entire Satsuma-Hirota coupled hierarchy.